Home » Given that (81times 2^{2n-2} = K, find sqrt{K})

Given that (81times 2^{2n-2} = K, find sqrt{K})

Given that (81times 2^{2n-2} = K, find sqrt{K})

  • A.
    (4.5times 2^{n})
  • B.
    (4.5times 2^{2n})
  • C.
    (9times 2^{n-1})
  • D.
    (9times 2^{2n})
Correct Answer: Option C
Explanation

(K = 81 times 2^{2n – 2})

(sqrt{K} = sqrt{81 times 2^{2n – 2}})

= (9 times 2^{n – 1})

Related:  The sum of (3frac{7}{8}) and (1frac{1}{3}) is less than the difference between (frac{1}{8}) and (1frac{2}{3})...