If 3

^{2y}+ 6(3^{y}) = 27. Find y-
**A.**

3 -
**B.**

-1 -
**C.**

2 -
**D.**

-3 -
**E.**

1

##### Correct Answer: Option E

##### Explanation

3^{2y} + 6(3^{y}) = 27

This can be rewritten as (3^{y})^{2} + 6(3^{y}) = 27

Let 3^{y} = x

x^{2} + 6x – 27 = 0

(x + 9)(x – 3) = 0

when x – 3 = 0, x = 3

sub. for x in 3y = x

3^{y} = 3

log_{3}3 = y

y = 1