Home » If cot (theta) = (frac{x}{y}), find cosec(theta)

If cot (theta) = (frac{x}{y}), find cosec(theta)

If cot (theta) = (frac{x}{y}), find cosec(theta)

  • A.
    (frac{1}{y})(x2 + y2)
  • B.
    (frac{x}{y})
  • C.
    (frac{1}{y})(sqrt{x^2 + y^2})
  • D.
    (frac{x – y}{y})
Correct Answer: Option C
Explanation

(cot theta = frac{x}{y})

(implies tan theta = frac{y}{x})

(opp = y; adj = x)

Using Pythagoras theorem, (Hyp^{2} = Opp^{2} + Adj^{2})

(Hyp^{2} = y^{2} + x^{2})

(Hyp = sqrt{y^{2} + x^{2}})

(sin theta = frac{y}{sqrt{y^{2} + x^{2}}})

(therefore csc theta = frac{sqrt{y^{2} + x^{2}}}{y})

= (frac{1}{y}(sqrt{y^{2} + x^{2}}))