What value of Q will make the expression 4x

^{2}+ 5x + Q a complete square?-
**A.**

(frac{25}{16}) -
**B.**

(frac{25}{64}) -
**C.**

(frac{5}{8}) -
**D.**

(frac{5}{4})

##### Correct Answer: Option A

##### Explanation

4x^{2} + 5x + Q

To make a complete square, the coefficient of x^{2} must be 1

= x^{2} + (frac{5x}{4}) + (frac{Q}{4})

Then (half the coefficient of x^{2}) should be added

i.e. x^{2} + (frac{5x}{4}) + (frac{25}{64})

∴ (frac{Q}{4}) = (frac{25}{64})

Q = (frac{4 times 25}{64})

= (frac{25}{16})