A flagstaff stands on the top of a vertical tower. A man standing 60 m away from the tower observes that the angles of elevation of the top and bottom of the flagstaff are 64

^{o}and 62^{o}respectively. Find the length of the flagstaff.-
**A.**

60 (tan 62^{o}– tan 64^{o}) -
**B.**

60 (cot 64^{o}– cot 62^{o}) -
**C.**

60 (cot 62^{o}– cot 64^{o}) -
**D.**

60 (tan 64^{o}– tan 62^{o})

##### Correct Answer: Option D

##### Explanation

(frac{BC}{60}) = (frac{tan 62}{1})

BC = 60 tan 62

(frac{AC}{60}) = (frac{tan 62}{1})

AC = 60 tan 64

AB = AC – BC

= 60(tan 64^{o} – tan 62^{o})